METRIC SPACES: FINAL EXAM 2013

DOCENT: A. V. KISELEV

Evaluation: $\min \left(100\%, \max(5 \text{ prb} \times 20\% \cdot \begin{bmatrix} 1.00 \\ 1.15^{\text{top}} \end{bmatrix}, \sum_{i=1}^{6} \text{h/w} \times 5\% + 5 \text{ prb} \times 14\% \cdot \begin{bmatrix} 1.00 \\ 1.15^{\text{top}} \end{bmatrix} \right) \right)$.

Problem 1. Let (\mathfrak{X}, d) be a non-empty metric space, r and s be two positive radii, and $B_r^d(x) = B_s^d(y)$ for some $x, y \in \mathfrak{X}$.

- Is it true that r = s?
- Is it true that x = y?

Problem 2 (top). Let $A \subseteq \mathcal{X}$ be a subset of a non-empty space \mathcal{X} . Prove that the boundary ∂A of A is closed in \mathcal{X} .

Problem 3 (top). Let $A \subseteq \mathcal{X}$ be a connected subset of a space \mathcal{X} and suppose that $A \subseteq B \subseteq \overline{A}$. Is the subset $B \subseteq \mathcal{X}$ always connected? (state and prove)

Problem 4 (top). Suppose that a non-empty Hausdorff space \mathcal{X} is compact and there is a continuous map $f: \mathcal{X} \to \mathcal{X}$. Let $\mathcal{X}_1 = \mathcal{X}$ and put $\mathcal{X}_{n+1} = f(\mathcal{X}_n)$ inductively for all $n \in \mathbb{N}$.

• Prove that $A = \bigcap_{n=1}^{+\infty} \mathfrak{X}_n$ is non-empty.

Problem 5. Prove that every discrete metric space (\mathfrak{X}, d_0) is complete.

Date: April 4, 2013.

Do not postpone your success until July 5, 2013. GOOD LUCK!